Publications

2024

  1. OpenAgents: An Open Platform for Language Agents in the Wild
    Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu,  Yiheng Xu, and 4 more authors
    Conference on Language Modeling (COLM) 2024
  2. Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration
    Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, and Lingpeng Kong,
    Conference on Language Modeling (COLM) 2024
  3. CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration
    Jiahui Gao, Renjie Pi, Tianyang Han, Han Wu, Lanqing HONG, Lingpeng Kong, Xin Jiang, and Zhenguo Li,
    Conference on Language Modeling (COLM) 2024
  4. Empowering Large Language Model Agents through Action Learning
    Haiteng Zhao, Chang Ma, Guoyin Wang, Jing Su, Lingpeng Kong, Jingjing Xu, Zhi-Hong Deng, and Hongxia Yang,
    Conference on Language Modeling (COLM) 2024
  5. A Reparameterized Discrete Diffusion Model for Text Generation
    Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong,
    Conference on Language Modeling (COLM) 2024
  6. SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving
    Xueliang Zhao, Xinting Huang, Wei Bi, and Lingpeng Kong,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2024
  7. BBA: Bi-Modal Behavioral Alignment for Reasoning with Large Vision-Language Models
    Xueliang Zhao, Xinting Huang, Tingchen Fu, Qintong Li, Shansan Gong, Lemao Liu, Wei Bi, and Lingpeng Kong,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2024
  8. Red Teaming Visual Language Models
    Mukai Li, Lei Li, Yuwei Yin, Masood Ahmed, Zhenguang Liu, and Qi Liu,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2024
  9. Large Language Models are not Fair Evaluators
    Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2024
  10. A Challenging Benchmark for Low-Resource Learning
    Yudong Wang, Chang Ma, Qingxiu Dong, Lingpeng Kong, and Jingjing Xu,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2024
  11. LoRA Meets Dropout under a Unified Framework
    Sheng Wang, Liheng Chen, Jiyue Jiang, Boyang Xue, Lingpeng Kong, and Chuan Wu,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2024
  12. GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers
    Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2024
  13. PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA
    Sheng Wang, Boyang Xue, Jiacheng Ye, Jiyue Jiang, Liheng Chen, Lingpeng Kong, and Chuan Wu,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2024
  14. L-Eval: Instituting Standardized Evaluation for Long Context Language Models
    Chenxin An, Shansan Gong, Ming Zhong, Mukai Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2024
  15. Multimodal ArXiv: A Dataset for Improving Scientific Comprehension of Large Vision-Language Models
    Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong Feng, Lingpeng Kong, and Qi Liu,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2024
  16. Self-Infilling Code Generation
    Lin Zheng, Jianbo Yuan, Zhi Zhang, Hongxia Yang, and Lingpeng Kong,
    In Proceedings of the International Conference on Machine Learning (ICML) 2024
  17. Training-Free Long-Context Scaling of Large Language Models
    Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong,
    In Proceedings of the International Conference on Machine Learning (ICML) 2024
  18. Decomposing the Enigma: Subgoal-based Demonstration Learning for Formal Theorem Proving
    Xueliang Zhao, Wenda Li, and Lingpeng Kong,
    In Proceedings of the International Conference on Machine Learning (ICML) 2024
  19. Lemur: Harmonizing Natural Language and Code for Language Agents
    Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu, Tianbao Xie, Zhoujun Cheng,  Siheng Zhao, and 4 more authors
    In International Conference on Learning Representations (ICLR) 2024
  20. UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model in Data Science
    Yazheng Yang, Yuqi Wang, Guangyi Liu, Ledell Yu Wu, and Qi Liu,
    In International Conference on Learning Representations (ICLR) 2024

2023

  1. Can Language Models Understand Physical Concepts?
    Lei Li, Jingjing Xu, Qingxiu Dong, Ce Zheng, Qi Liu, Lingpeng Kong, and Xu Sun,
    In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2023
  2. DetGPT: Detect What You Need via Reasoning
    Renjie Pi, Jiahui Gao, Shizhe Diao, Rui Pan, Hanze Dong, Jipeng Zhang, Lewei Yao, Jianhua Han, Hang Xu, and Lingpeng Kong Tong Zhang,
    In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2023
  3. Generating Data for Symbolic Language with Large Language Models
    Jiacheng Ye, Chengzu Li, Lingpeng Kong, and Tao Yu,
    In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2023
  4. DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for Accelerated Seq2Seq Diffusion Models
    Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong,
    In Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP Findings) 2023
  5. GIMLET: A Unified Graph-Text Model for Instruction-Based Molecule Zero-Shot Learning
    Haiteng Zhao, Shengchao Liu, Chang Ma, Hannan Xu, Jie Fu, Zhihong Deng, Lingpeng Kong, and Qi Liu,
    In Advances in Neural Information Processing Systems (NeurIPS) 2023
  6. Statistical Knowledge Assessment for Large Language Models
    Qingxiu Dong, Jingjing Xu, Lingpeng Kong, Zhifang Sui, and Lei Li,
    In Advances in Neural Information Processing Systems (NeurIPS) 2023
  7. Evaluating Self-Supervised Learning for Molecular Graph Embeddings
    Hanchen Wang, Jean Kaddour, Shengchao Liu, Jian Tang, Matt J. Kusner, Joan Lasenby, and Qi Liu,
    In Advances in Neural Information Processing Systems (NeurIPS) 2023
  8. Self-Adaptive In-Context Learning: An Information Compression Perspective for In-Context Example Selection and Ordering
    Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2023
  9. Explanation Regeneration via Information Bottleneck
    Qintong Li, Zhiyong Wu, Lingpeng Kong, and Wei Bi,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2023
  10. A Cognitive Stimulation Dialogue System with Multi-source Knowledge Fusion for Elders with Cognitive Impairment
    Jiyue Jiang, Sheng Wang, Qintong Li, Lingpeng Kong, and Chuan Wu,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2023
  11. SORTIE: Dependency-Aware Symbolic Reasoning for Logical Data-to-text Generation
    Xueliang Zhao, Tingchen Fu, Lemao Liu, Lingpeng Kong, Shuming Shi, and Rui Yan,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2023
  12. One Embedder, Any Task: Instruction-Finetuned Text Embeddings
    Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A. Smith, Luke Zettlemoyer, and Tao Yu,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2023
  13. Compositional Exemplars for In-context Learning
    Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong,
    In Proceedings of the International Conference on Machine Learning (ICML) 2023
  14. CAB: Comprehensive Attention Benchmarking on Long Sequence Modeling
    Jinchao Zhang, Shuyang Jiang, Jiangtao Feng, Lin Zheng, and Lingpeng Kong,
    In Proceedings of the International Conference on Machine Learning (ICML) 2023
  15. DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation
    Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Yih, Daniel Fried, Si-yi Wang, and Tao Yu,
    In Proceedings of the International Conference on Machine Learning (ICML) 2023
  16. Efficient Attention via Control Variates
    Lin Zheng, Jianbo Yuan, Chong Wang, and Lingpeng Kong,
    In International Conference on Learning Representations (ICLR) 2023
  17. Self-Guided Noise-Free Data Generation for Efficient Zero-Shot Learning
    Jiahui Gao, Renjie Pi, Lin Yong, Hang Xu, Jiacheng Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan Liang, Zhenguo Li, and Lingpeng Kong,
    International Conference on Learning Representations (ICLR) 2023
  18. Toeplitz Neural Network for Sequence Modeling
    Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Lingpeng Kong, and Yiran Zhong,
    International Conference on Learning Representations (ICLR) 2023
  19. DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models
    Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong,
    International Conference on Learning Representations (ICLR) 2023
  20. Binding Language Models in Symbolic Languages
    Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and Tao Yu,
    International Conference on Learning Representations (ICLR) 2023
  21. Selective Annotation Makes Language Models Better Few-Shot Learners
    Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu,
    International Conference on Learning Representations (ICLR) 2023
  22. Unsupervised Explanation Generation via Correct Instantiations
    Sijie Chen, Zhiyong Wu, Jiangjie Chen, Zhixing Li, Yang Liu, and Lingpeng Kong,
    In Proceedings of AAAI Conference on Artificial Intelligence (AAAI) 2023
  23. An Empirical Study of Retrieval-Enhanced Graph Neural Networks
    Dingmin Wang, Shengchao Liu, Hanchen Wang, Bernardo Cuenca Grau, Linfeng Song, Jian Tang, Song Le, and Qi Li,
    European Conference on Artificial Intelligence (ECAI) 2023
  24. Retrieved Sequence Augmentation for Protein Representation Learning
    Chang Ma, Haiteng Zhao, Lin Zheng, Jiayi Xin, Qintong Li, Lijun Wu, Zhihong Deng, Yang Lu, Qi Liu, and Lingpeng Kong,
    arXiv preprint 2023

2022

  1. ProGen: Progressive Zero-shot Dataset Generation via In-context Feedback
    Jiacheng Ye, Jiahui Gao, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong,
    In Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP Findings) 2022
  2. Augmenting Multi-Turn Text-to-SQL Datasets with Self-Play
    Qi Liu, Zihuiwen Ye, Tao Yu, Phil Blunsom, and Linfeng Song,
    In Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP Findings) 2022
  3. ZeroGen: Efficient Zero-shot Learning via Dataset Generation
    Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong,
    In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2022
  4. UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models
    Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida Wang, Victor Zhong,  Bailin Wang, and 11 more authors
    In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2022
  5. CoNT: Contrastive Neural Text Generation
    Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong, Xipeng Qiu, and Xuanjing Huang,
    In Advances in Neural Information Processing Systems (NeurIPS) 2022
  6. Linear Complexity Randomized Self-attention Mechanism
    Lin Zheng, Chong Wang, and Lingpeng Kong,
    In Proceedings of the International Conference on Machine Learning (ICML) 2022
  7. Ripple Attention for Visual Perception with Sub-quadratic Complexity
    Lin Zheng, Huijie Pan, and Lingpeng Kong,
    In Proceedings of the International Conference on Machine Learning (ICML) 2022
  8. Event Transition Planning for Open-ended Text Generation
    Qintong Li, Piji Li, Wei Bi, Zhaochun Ren, Yuxuan Lai, and Lingpeng Kong,
    In Findings of the Annual Meeting of the Association for Computational Linguistics (ACL Findings) 2022
  9. Lexical Knowledge Internalization for Neural Dialog Generation
    Zhiyong Wu, Wei Bi, Xiang Li, Lingpeng Kong, and Ben Kao,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2022
  10. Linguistic Frameworks Go Toe-to-Toe at Neuro-Symbolic Language Modeling
    Jakob Prange, Nathan Schneider, and Lingpeng Kong,
    In North American Chapter of the Association for Computational Linguistics (NAACL) 2022

2021

  1. Cascaded Head-colliding Attention
    Lin Zheng, Zhiyong Wu, and Lingpeng Kong,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2021
  2. Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual Context in Multimodal Machine Translation
    Zhiyong Wu, Lingpeng Kong, Wei Bi, Xiang Li, and Ben Kao,
    In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) 2021